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Abstract
In the previous article (Matsutani S 2002 J. Geom. Phys. 43 146–62), we
showed the hyperelliptic solutions of a loop soliton as a study of a quantized
elastica. Using the results, this paper studies relations between the quantized
elastica and integrals of its Schwarz derivative, the winding effects in the
quantized elastica problems and some other related relations.

PACS numbers: 02.30.Ik, 03.70.+k, 87.19.Pp, 64.60.De
Mathematics Subject Classification: 37K20, 35Q53, 14H45, 14H70

1. Introduction

In [Ma0, Ma6], the author proposed a problem, which is called quantized elastica problem,
to evaluate every statistical mechanical quantity of closed ideal polymers on a plane in a heat
bath as a toy model. This could be generalized to the three-dimensional case [Ma1]. However
even though it is a toy model, the problem is very deep from mathematical viewpoint because
we classify ‘real sharp’ and deal with its ‘moduli’. To work out the problem, the author has
investigated the related problems and developed the mathematical tools in the series of studies
[Ma2, Ma3, Ma4, Ma5, Ma6, Ma7] following theories of the integrable systems ([BBEIM,
D, GH, GP, TD, Mul], references therein), classical theories of hyperelliptic functions in the
nineteenth century [Ba1, Ba2, Ba3, BEL1, BEL2, O, W], studies of loop space [Br, BT] and
so on. In this paper, using these results, we will show functional relations appearing in the
problem.

Let a circle S1 immersed in a complex plane C characterized by the affine coordinate
Z(s) := X1(s) +

√−1X2(s) around the origin. Here s is a parameter of S1 satisfying
ds2 = (dX1)2 + (dX2)2. For a loop Z, the Euler–Bernoulli energy functional is defined by

E[Z] =
∮

ds{Z, s}SD, (1.1)

where {Z, s}SD is the Schwarz derivative,

{Z, s}SD := ∂s

(
∂2
s Z

∂sZ

)
− 1

2

(
∂2
s Z

∂sZ

)2

. (1.2)
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The quantized elastica problem (or statistical mechanics of elasticas) is to compute the
‘partition function’ of the temperature 1/β,

Z[β] =
∫

DZ exp(−βE[Z]), (1.3)

as an ‘integral’ over all possible non-stretching loops with the same length, in a certain physical
sense. Here ∂s := ∂/∂s and DZ is the ‘Feynman measure’ for the all possible states. Due to
the recent developments of technology, it becomes more important to deal with shape effects
in physics quantitatively and we should develop mathematical tools to express them well.
This problem stemmed from the statistical mechanical treatments of closed polymers and is
expected that it becomes a prototype which shows us how to deal with the geometry and shape
in statistical mechanics after we solve it. By the resemblance between the path integral in the
quantum mechanics and partition functions in the statistical mechanics, we call it quantized
elastica problem and also expect that it gives a guide to quantization of geometrical objects.

Whereas the ordinary (classical) elastica problem1 is to evaluate its extremal points of
the energy functional (1.1), in the quantized elastica problem, we should calculate some
contributions from loops with outside of the extremal points of (1.1), which contrasts with the
classical elastica problem.

In order to make this physical functional (1.3) have mathematical meanings, we should
define the measure DZ precisely, by following the spirit of sum over all possible states. For
the purpose, we should answer the question what are the same or different states. It implies
that we should classify a loop space �C to the complex plane with paying attentions upon the
energy functional (1.1) and Euclidean moves. Reference [Ma6] studied the loop space as the
moduli space of the quantized elastica,

MC

elas :=
{
Z : S1 → C

∣∣∣∣
∮

dZ = 2π

}/
∼,

where ∼ means the Euclidean moves. MC

elas has a spectrum decomposition with respect to the
Euler–Bernoulli energy (1.1),

MC

elas :=
∏
E

MC

elas,E, MC

elas,E := {
Z ∈ MC

elas

∣∣E[Z] = E
}
. (1.4)

As the loop soliton [KIW, I] preserves the local length and the energy functional (1.1),
[Ma0, Ma6] showed that MC

elas,E consists of the orbits of a group action associated with the
loop soliton. Here the loop soliton is defined as follows.

Definition 1.1 [KIW, I]. A one-parameter-family of loops {Z(t) : S1 → C|t ∈ R} for a real
parameter t ∈ R is called a loop soliton, if its half curvature q := 1

2
√−1

∂s log ∂sZ(t, s) obeys
the modified Korteweg–de Vries (MKdV) equation,

∂tq + 6q2∂sq + ∂3
s q = 0,

where ∂t := ∂/∂t .

In [Ma0], following the study of Goldstein and Petrich [GP], the moduli spaces are
completely classified by the solution space of the MKdV hierarchy. In [Ma6], by using the
results of Mulase [Mul] and theories of the integrable system ([BBEIM, D, TD], references
therein), MC

elas,E is topologically decomposed to disjoint spaces which are characterized by
the integer, the genera of the related hyperelliptic curves.

1 The classical elastica problem was solved by Euler in 1744 completely, which provided the guide to the development
of differential geometry, algebraic geometry and elliptic function theory [E, T].
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However, even though we have its topological classification of MC

elas,E , it is far from our
goal to compute the partition function quantitatively and there remains so many problems to
evaluate it.

As J McKay pointed out, there are apparent resemblances between relations in the
replicable functions [FMN, Mc, MS] and those in the quantized elastica. The replicable
functions are closely related to the monstrous moonshine problem [Mc]. The relation between
the sporadic finite group, Monster, and the modular functions of SL(2, Z) is written in terms
of the conformal field theory, vertex operator and Kac–Moody algebra [Bo]. On the other
hand, there is a conjecture, sometimes called Witten conjecture, that the problem might be
connected with a loop space ([HBJ], pp 73–88). In [Mc, MS], it was shown that the replicable
function f holds the relation

qp
f (q) − f (p)

p − q
= exp

⎛
⎝−

∑
n,m�1

hm,np
mqn

⎞
⎠ , (1.5)

where hm,n is Grunsky coefficients, hm,n = hn,m. In ([MS], proposition 4.1), the Schwarz
derivative of f is given by

{f, q}SD = lim
p→q

{f, p, q}SD = 6
∑
m,n

mnhm,nq
m+n−2,

1

6
{f, p, q}SD :=

∑
m,n

mnhm,np
m−1qn−1.

The relation (1.5) is reduced to a differential equation,

−∂qf (q) = exp

(
− lim

p→q

∫ p

dp′
∫ q

dq ′
(

1

6
{f, p′, q ′}SD

)
− 2 log q

)
. (1.6)

In ([Ma3], (4.6)), we have a relation of elliptic functions which is resemble to (1.6), i.e.,

∂uZ
(a)(u) = lim

ε→0

1

σ(ε)2
exp

(
−1

2

∫ u

ε

du′
∫ u′

0
du′′[{Z(a)(u′′), u′′}SD

−{Z(a)(u′′ − ωa), u
′′}SD]

)
. (1.7)

Its differential expression is

∂2
u log ∂uZ

(a)(u) = 1
2 ({Z(a)(u − ωa), u}SD − {Z(a)(u), u}SD). (1.8)

The partition functions (1.3) must be an invariance of the loop spaces �C because MC

elas is
a quotient space of �C by some symmetries. Thus this resemblance might provide a novel
insight on our quantized elastica problem. In fact, there is a completely different statistical
mechanical treatment of the polymers problem [Z], in which the behavior of the self-avoiding
two-dimensional polymer loops on a cylinder is described well by the conformal field theory,
the MKdV equation and the sinh-Gordon equation. However, there is no answer to the
question why the MKdV equation appears in these polymer problems, of self-avoiding loops
on a cylinder and our loops with the self-intersections and the Euler–Bernoulli energy on a
plane. We expect that the resemblance might give some hint for the answer. Furthermore
as we mention in section 4, when we consider the winding effects in our quantized elastica
problem, we encounter the modular properties for the SL(2, Z) action on a upper-half plane.
Thus the appearance correspondence might has some effects on the action and further studies
of the quantized elastica.
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Thus the purpose of this paper is to study functional properties of the loop solitons and a
quantized elastica as a sequel of the previous paper [Ma3]. Then we generalize (1.8), which
is resemble to (1.6). Furthermore as our investigations are closely related to the geometry
of MKdV equation studied by E Previato in [P1], we will give some comments on [P1] in
remarks 3.2 and 3.5.

The content of this paper is as follows. Section 2 gives minimal preliminaries to express
our results in sections 3 and 4. We start with a hyperelliptic curve given by (2.1) and thus there
basically appear no other parameters besides λ’s in (2.1). The quantities defined in definition
2.4 directly play important roles in our theory. After reviewing the previous results [Ma3] in
proposition 3.1, we give our main theorem in theorem 3.4. Equation (3.8) is a generalization
of (1.8) to a higher genus. Section 4 is devoted to the studies of the winding effects in the
problem.

2. Preliminary for hyperelliptic functions

Hyperelliptic curve. This paper deals with a hyperelliptic curve Cg of genus g(g > 0) given
by the affine equation,

y2 = f (x)

= λ2g+1x
2g+1 + λ2gx

2g + · · · + λ2x
2 + λ1x + λ0

= (x − b1)(x − b2) · · · (x − b2g+1),

(2.1)

where λ2g+1 ≡ 1 and λj ’s and bj ’s are complex numbers.

Definition 2.1 [Ba1, Ba2, BEL1, BEL2, W].

(1) For a point (xi, yi) ∈ Cg , the unnormalized differentials of the first kind are defined by

du
(i)
1 := dxi

2yi

, du
(i)
2 := xidxi

2yi

, . . . , du(i)
g := x

g−1
i dxi

2yi

.

(2) The Abel map from g th symmetric product of the curve Cg to C
g is defined by

u := (u1, . . . , ug) : Symg(Cg) −→ C
g,(

uk((x1, y1), . . . , (xg, yg)) :=
g∑

i=1

∫ (xi ,yi )

∞
du

(i)
k

)
.

Notation 2.2. Let the homology of a hyperelliptic curve Cg be denoted by H1(Cg, Z) =⊕g

j=1 Zαj ⊕ ⊕g

j=1 Zβj . Here these intersections are given as [αi, αj ] = 0, [βi, βj ] = 0 and
[αi, βj ] = δi,j . The complete hyperelliptic integrals of the first kind are defined by

ωωω′ := 1

2

⎡
⎣(∫

αj

du
(a)
i

)
ij

⎤
⎦ , ωωω′′ := 1

2

⎡
⎣(∫

βj

du
(a)
i

)
ij

⎤
⎦ , ωωω :=

[
ωωω′

ωωω′′

]
.

The Jacobi varieties (Jacobian) Jg are defined as a complex torus:

Jg := C
g/���g.

Here ���g is a real 2g-dimensional lattice generated by the periodic matrix given by 2ωωω.
Furthermore, u is assigned to the coordinate of C

g and of the Jacobian Jg .
Here we note that ηηη’s and ωωω’s satisfy the Legendre relations

tωωω′ηηη′′ − tωωω′′ηηη′ = 1
2π

√−1Ig, (2.2)

where Ig is the g × g unit matrix.
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Definition 2.3. Using the unnormalized differentials of the second kind,

dr
(i)
j = 1

2yi

2g−j∑
k=j

(k + 1 − j)λk+1+j x
k
i dxi, (j = 1, . . . , g),

the complete hyperelliptic integral matrices of the second kind are defined by

ηηη′ := 1

2

⎡
⎣(∫

αj

dr
(a)
i

)
ij

⎤
⎦ , ηηη′′ := 1

2

⎡
⎣(∫

βj

dr
(a)
i

)
ij

⎤
⎦ .

The hyperelliptic σ function, which is a holomorphic function over u ∈ C
g , is defined by

([Ba2], p 336, p 350), [Kl, BEL1]

σ(u) := σ(u;Cg) :≡ γ exp

(
−1

2
t uηηη′ωωω′−1

u

)
ϑ
[
δ ′′δ′] (1

2
ωωω′−1

u;τττ
)

, (2.3)

where γ is a certain constant factor, ϑ[] is the Riemann θ function,

ϑ

[
a

b

]
(z;τττ) :=

∑
n∈Zg

exp

[
2π

√−1

{
1

2
t(n + a)τττ(n + a) + t(n + a)(z + b)

}]
,

with τττ := ωωω′−1
ωωω′′ for g-dimensional vectors a and b, and

δ′ :=t

[
g

2

g − 1

2
· · · 1

2

]
, δ′′ :=t

[
1

2
· · · 1

2

]
.

Definition 2.4.

(1) Hyperelliptic ‘al’ function is defined by ([Ba2], p 340), [W]

alr (u) = γr

√
F(br), (2.4)

where γr is a certain constant number, br is one of the finite branch points (r =
1, 2, . . . , 2g − 1) and

F(x) := (x − x1) · · · (x − xg). (2.5)

(2) Hyperelliptic ζν function is defined by

ζµ = ∂

∂uµ

log σ(u). (2.6)

(3) Hyperelliptic ℘µν function is defined by

℘µν = − ∂2

∂uµ∂uν

log σ(u).

(4) The power symmetric function q is defined by

qn :=
g∑

i=1

xn
i (u), qn,µ := ∂

∂uµ

qn. (2.7)

Proposition 2.5.

(1) Introducing the half-period ωr := ∫ br

∞ du(a), we have the relation ([Ba2], p 340),

alr (u) = γ ′′
r

exp(−t uηηη′ωωω′−1
ωr)σ (u + ωr)

σ (u)
, (2.8)

where γ ′′
r is a certain constant.

5
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(2) The hyperelliptic ℘gi function is given as an elementary symmetric function,

F(x) = xg −
g∑

i=1

℘g,ix
g−i .

i.e.,

℘gν = (−1)ieµ−1(u), (2.9)

where eµ(u) is the µth elementary symmetric function of xi’s.

3. Relations in a loop soliton

As mentioned in section 1, this section gives relations in a quantized elastica following the
previous results [Ma3]. Before we show our new results, we review the previous results in
[Ma3] as follows.

Proposition 3.1. Assume that the configuration of the x-components (x1, . . . , xg) of the affine
coordinates of the hyperelliptic curves Symg(Cg), a finite branch point br of Cg and the
coefficients λ’s of each Cg satisfy

|F(br)| = 1, and ug ∈ R. (3.1)

For such (x1, y1), . . . , (xg, yg), we have u := u((x1, y1), · · · , (xg, yg)) and following results.

(1) By setting s ≡ ug/�0 and t ≡ ug−1/�0 + (λ2g−1 + br)ug/�0 for a certain positive number
�0,

∂ug
Z(r)(u) = F(br)/�0, or

∣∣∂ug
Z(r)

∣∣ = 1,

completely characterizes the loop soliton Z(r).
(2) The shape of loop soliton Z(r) is given by

Z(r)(u) = 1

�0

(
bg

r ug +
g∑

i=1

bi−1
r ζi(u)

)
.

(3) The Schwarz derivative of Z(r) with respect to ug is given by

{Z(r), ug}SD = 4℘gg + 2λ2g + 2br . (3.2)

Here we should give remarks on the previous results.

Remark 3.2.

(1) In the statistics and the statistical mechanics, the measure which gives the information
how to measure a concerned system is very important. For the quantized elastica problem,
as ∂ug

Z(r) could be regarded as a Jacobi matrix of the Riemann measure of the elastica, it
is very important that it is expressed in terms only of the data of the curve (2.1). Using the
relations, we may discriminate the shapes and formulate their contribution to the partition
function (1.3) as a distribution function or measure over the parameter space of λ’s when
we redefine the Feynman measure in (1.3).

6
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(2) In [P1], E Previato studied the loop soliton based upon the works of [GP] and provided
periodic solutions of the loop soliton problem using the Riemann θ functions, though
we did not mention in [Ma3, Ma6]. Further solutions of the MKdV equation in terms
of hyperelliptic functions were studied in ([GH], references therein) based upon the
([BBEIM], references therein) and their related works.

However from the view point of the studies of the quantized elastica problem, as
mentioned in (1), we need discriminate the solutions of loop soliton problems and
the MKdV equation. Since the parameters of the Riemann theta function have some
ambiguities due to the problem of excess parameters, it is proper to deal with the solutions
in terms only of the data of the hyperelliptic curves themselves. Hence [Ma3, Ma4]
followed the fashion of the studies of the nineteenth century [Ba1, Ba2, Ba3, W] and
similar movements [BEL1, BEL2]. We could deal with the hyperelliptic functions and
their differentials without any theta functions, as in [Ba3, W]. Then it is shown that if it
satisfies the assumption, for each br, F (br) has such a geometrical meaning [Ma3].2

(3) As a closed loop soliton and an element in MC

elas are defined as loops modulo Euclidean
moves, we should regard Z(r)(s) of a fixed s as a vector in the complex plane. It implies
that an addition of Z(r)’s with complex coefficients has mathematical meanings. As
al-function is a generalization of Jacobi sn, cn and dn function which have the relations

sn2(u) + cn2(u) = 1, k2sn2(u) + dn2(u) = 1,

it is known that there are constant numbers γ ′′′
ri

of distinct ri belongs to {1, 2, 3, . . . , 2g +
1}, i = 1, 2, . . . , g + 1, such that [W, Ma5],

g+1∑
i=1

γ ′′′
ri

al2ri
= 1.

This implies that if we regard ∂ug
Z(r)(s) as a base of the function space as a linear space,

‘their linear independence’ might be important when we consider the contributions to the
partition function (1.3).

(4) It should be noted that Z(r) is given by the ζi functions. As mentioned in ([Ma3], (2.22),
(3.19) and the appendix), they are connected with the integral of the differential of the
second kind ([BEL1], its unpublished improved version). The differentials of the second
kind dri is related to the Legendre relation (2.2) and gives the symplectic structure of
the curve Cg with the differentials of the first kind ui’s. When we quantize Z(r) in the
framework of the operator formalism, we might need a canonical commutative relation for
its phase space with degrees of freedom. It is natural that there appears such a symplectic
structure in the framework of the path integral formulation.

(5) As the MKdV equation is studied well for an even hyperelliptic curve, i.e., y2 =
x2g+2 + λ′

2g+1x
2g+1 + · · · + λ′

0 and we have employed the curve (2.1) whose f (x) has
the odd degree and considered the solutions of the MKdV equation, we will give a
comment on the even curve. For the genus g = 1 case, the Weierstrass ℘ function

2 In [GH], the solution of the MKdV equation is investigated only of the r = 0 case for the curve (2.1) b0 = 0.
Similarly in [BBEIM, GH, TD, BEL1], the solution of the sine-Gordon equation is also studied under the same
situation. They are enough and sufficient from the viewpoint of the studies of an integral systems. However for the
study of the quantized elastica, we want to have the solutions for every br . It may be easy to solve the problem by
shifting xi → xi − br . However it is not easy to answer whether we should act the shift operation on the definition

du
(i)
j := x

j−1
i

dxi

2yi
or not. For the case of the sine-Gordon equation [Ma5], it is necessary but for the MKdV equation,

we need not act the operation on the dug’s. In [W, Ba2, Ba3], they discriminated the differences and by following
them, we have the results for our purpose.

7
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corresponds to a curve y2 = 4(x − e1)(x − e2)(x − e3), whereas the Jacobi sn functions
to

w2 = 4(z2 − 1)(z2 − k2), (3.3)

where w = y/z
√

(e2 − e1)3, z = √
(x − e1)/(e2 − e1) and

dx

y
= 2

√
e2 − e1

dz

w
.

As the alr function is a generalization of the sn-function for the ℘ij function of the curve
(2.1), we have implicitly dealt with an even curve Ĉ2g−1 with genus 2g − 1 whose affine
part is given by

w2 =
2g+1∏

i=1,	=r

(z2 − ai), (3.4)

where ai = bi −br, z = √
x − br and w = y/z. When g = 1, (3.4) is essentially reduced

to (3.3). Noting the relations,

z2idz

2w
= xidx

4y
, i = 0, 1, 2, . . . , g − 1,

a certain subvariety of the Jacobian associated with Ĉ2g−1 corresponds to the domain of
alr -function because for (zi, wi)i=1,...,g ∈ Symg(Ĉ2g−1), and alr is expressed by

∏g

i=1 zi ,
i.e., a meromorphic function of Symg(Ĉ2g−1).

(6) In order to satisfy (3.1) for real parts in the Jacobian, we must constraint the coefficients
in (2.1) of the curve. [Ma7] provided some studies on the assumptions following the
genus one case in [Mu1].

From the previous results, we automatically have following corollary.

Corollary 3.3. A loop soliton Z(r)(u) satisfies following relations.

(1) For every i = 1, 2, . . . , g, we have

∂ug
Z(r)(u + 2ω′

i ) ≡ ∂ug
Z(r)(u), ∂ug

Z(r)(u + 2ω′′
i ) ≡ ∂ug

Z(r)(u).

(3.5)

(2) When we regard Z(r) as a function of (xi − br)i=1,...,g ,

∂ug
Z(r)(x1 − br, . . . , xg − br) ≡ ∂ug

Z(r)

(
1

x1 − br

, . . . ,
1

xg − br

)
. (3.6)

The followings are our main results in this paper.

Theorem 3.4. A loop soliton Z(r)(u) satisfies following relations.

(1)
∂ug

Z(r)(u) = bg
r exp

(
−

∞∑
n=1

qn

n
b−n

r

)
.

(2)
{Z(r)(u + ωr), ug}SD + {Z(r)(u), ug}SD = −

∞∑
n,m=1

qn,gqm,g

nm
b−n−m

r . (3.7)

(3) 1
2 [{Z(r)(u + ωr), ug}SD − {Z(r)(u), ug}SD] = −∂2

ug
log

(
∂ug

Z(r)(u)
)
. (3.8)

8
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Proof. The first formula is obvious from the relation between F(br) and the power symmetric
functions qn. By acting an operator ‘∂2

ug
log’ on the both sides of (2.8), we have

− ∂2
ug

log(F (br)) = −2℘gg(u + wr) + 2℘gg(u). (3.9)

Equation (3.2) gives us the third formula (3.8).
From ([Ma4], (3.27)), which is essentially the Miura transformation, we have

−∂2
ug

log(F (br)) = 4℘gg(u) + 2λ2g + 2br + 1
2

(
∂ug

log(F (br))
)2

. (3.10)

Using the relation [Ba3],

∂

∂ug

=
g∑

i=1

2yi

F ′(xi)

∂

∂xi

,

we have

∂ug
log(F (br)) =

∞∑
n=1

qn,g

n
b−n

r .

These constitute the second formula (3.7) by substituting (3.10) into (3.9), �

Remark 3.5.

(1) Equation (3.8) is the generalization of (1.8) to general genus g as a resemblance of
(1.5). This implies that our quantized elastica problem might be connected with the
replicable functions [HBJ, Mc]. In [P2], E Previato showed the following expansion for
a holomorphic function f to give an explanation of results of Tjurin [[50] in [P2]],

log(f (x) − f (y))

x − y
= log f ′(x) +

1

2

f ′′(z)
f ′(z)

(δx + δy)

+
1

6

[
f ′′′(z)
f ′(z)

− 3

4

(
f ′′(z)
f ′(z)

)2
]

(δx2 + δy2) − 1

6
{f, z}SD(δxδy) + · · ·

where δx = x − z and δy = y − z. This means

{f, z}SD = −6 lim
x,y→z

∂x∂y

log(f (x) − f (y))

x − y
.

The resemblance might come from these relations. They bring us many open problems
and possibilities of evaluating the partition functions (1.3). For example, they implicitly
show SL(2, C) invariance of the Schwarz derivative as a coefficient of δxδy [P2] and the
origin of the elastic energy of Euler–Bernoulli functional (1.1). However, we could not
use them well in our problem.

(2) In the derivation of (3.8), we use the relation of the sigma function (2.8). However if we
have followed [W], we could also show the relations without any theta functions.

(3) F(br) can be regarded as a generation function of the elementary symmetric functions
and thus behind our theorem, the Newton formula plays important roles. We also note
that F(x) and ∂ug

F (x) appeared in [Mu0] as U(x) and V (x) in his triplet representation
(U, V,W) of functions of hyperelliptic curves.

(4) As we have a gauge freedom to normalize ω′
g as an appropriate vector in the Jacobian, we

let it as the unit vector from here. We assume �0 = 1. The closed condition of the loop
soliton is given by

Z(r)(u1, . . . , ug−1, ug + 1) = Z(r)(u1, . . . , ug−1, ug). (3.11)

This condition is stronger than the relation i = g of (3.5). In this case, we have the
Fourier expansion of Z(r) as shown in the next section.

9
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(5) On a loop soliton and geometry of MKdV equations, readers should consult [P1], which
gives several mathematical open problems and results related to our quantized elastica
problem. For example, as in ([P1], remark 4.3), our system is closely related to formula
27 in p 19 of [F], which is of the Schwarz derivative and the prime form. Whereas the
prime form is connected with the spin structure of the curve Cg , [Ma3] shows that the
al-functions are solutions of the Dirac equation, which is the spinor representation of
the Frenet–Serret equation. We should connect their different spin structures in future.

4. Winding loops

Using the gauge freedom, we have normalized the period vector ω′
g as the unit vector.

Due to (3.11), we have the Fourier expansions of Z(r) of a closed loop soliton or a
quantized elastica, i.e., using functions an of (u1, u2, . . . , ug−1) and real parameter s ≡ ug ,

Z(r)(u) =
∞∑

n=−∞

1√
2π

an e2π
√−1ns,

1√−1
∂sZ

(r)(u) =
∞∑

n=−∞

√
2πnan e2π

√−1ns .

In this sense, we will regard Z(r)(u) as a function of s with parameters u# := (u1, u2, . . . , ug−1)

and refer it by Z(r)(s) := Z(r)(u#; s). Then we have the following proposition.

Proposition 4.1.

(1) The Euclidean move is represented by a choice of a0 and global constant factor c(|c| = 1)

of Z(r).
(2) By choosing a0 = 0, s0 = 0, and c = 1, the reality condition |∂sZ(u#; s)| = 1 is expressed

by

2π

∞∑
m=−∞

n(n + m)anan+m = δn,0.

(3) For a0 = 0, s0 = 0, and c = 1, the Fourier coefficients of the curvature of Z(r)(−s) can
be expressed by the bilinear form of an’s,

1√−1
∂s log ∂sZ

(r)(u#; s) = 4π2
∞∑

n,m=−∞
((n + m)2(m)aman+m).

Proof. The first relation is obvious. Noting ∂sZ(r) = 1/∂sZ
(r), direct computations give the

second and the third relations. �

Further as mentioned in [Ma2], there are winding solutions in our moduli space MC

elas.
Hence we will introduce a winding loop soliton for a loop soliton Z(r)(u#; s),

∂sZ
(r,n)(u#; s) := 1

n
∂sZ

(r)(u#; ns). (4.1)

Then it is obvious that the winding loop soliton is a kind of the loop soliton and has
following properties.

Proposition 4.2. For natural numbers n and m, we have following relations:

(1) E[Z(r,nm)] = n2E[Z(r,m)]. (4.2)

(2) m∂sZ
(r,nm)(u#; s) = ∂sZ

(r,n)(u#;ms).

10
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Remark 4.3.

(1) The above relation could be written as(
∂sZ

(r,pn)

(
s

p

)
+ ∂sZ

(r,pn)

(
s + 1

p

)
+ · · · + ∂sZ

(r,pn)

(
s + p − 1

p

))
= ∂sZ

(r,n)(s),

(4.3)

which reminds us of the action of Hecke for modular function of vanishing weight and
for a prime number p [S],

pTp(f (z)) = f (pz) +

(
f

(
z

p

)
+ f

(
z + 1

p

)
+ · · · + f

(
z + p − 1

p

))
. (4.4)

(2) Finally we should give a more physical comment on the partition function (1.3). Even
though (1.3) could not be computed in this stage, we can compute its part, Z(g)[β]
(g = 0, 1) which consists only of the closed loop solitons of each g = 0 and 1. We
know the closed loop soliton solutions of genera zero and one explicitly, which is given
by disjoint types, i.e., a circle and an eight-figure shape [E, Ma0, T]. Considering
contributions of winding loop soliton, for each g = 0 and 1, we obtain

Z(g)[β] =
∞∑

n=1

e−βn2Eg = 1

2
(θ(

√−1βEg/π) − 1),

where E0 and E1 are the Euler–Bernoulli energies (1.1) of genera zero and one and θ(z)

is the elliptic theta function, θ(z) := ∑∞
n=−∞ e

√−1πzn2
. Due to properties of the elliptic

theta function and Poisson sum formula,

Z(g) [β] =
√

1

Egβ

∞∑
n=1

e−n2/Egβ +
1

2

(
1√
Egβ

− 1

)
.

As Z(g)
[
β + 2π

√−1/Eg

] = Z(g) [β] (g = 0, 1), we regard that Z(g) [β] (g = 0, 1) has
modular properties.

When we could approximate Z[β] by Z(g) [β] or Z(0,1)[β] := ∑1
g=0 Z(g)[β] in a

certain sense and consider this model with something perturbed, we might encounter a
critical phenomenon related to this model from the viewpoint of statistical physics, due
to the modular properties.

Further when we consider the winding effects of each curve in Melas, we encounter
the theta function θ(z) for each curve in the partition function (1.3).
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